Gas-Phase Infrared Spectra of the Unstable Phosphaalkenes $CF_2 = PH$, $CF_2 = PCF_3$, and $CH_2 = PCl$: The C=P Stretching Vibration and Force Constant

Keiichi Ohno,* Eiichi Kurita, Masanobu Kawamura, and Hiroatsu Matsuura

Contribution from the Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730, Japan. Received August 25, 1986

Abstract: Gas-phase infrared spectra of the unstable phosphaalkenes CF2=PH, CF2=PCF3, and CH2=PCl and their deuteriated species have been measured and vibrational assignments have been made. The C-P stretching bands are observed at 1349.5, 1350.2, and 1365.3 cm⁻¹ for CF₂=PH, CF₂=PD, and CF₂=PCF₃, respectively, and at 979.7 and 847.9 cm⁻¹ for CH₂=PCI and CD2==PCl, respectively. Normal coordinates were treated for these molecules. For the fluorophosphaalkenes, the C==P stretching mode is highly coupled with the CF₂ symmetric stretching mode; one of the coupled vibrations is shifted to higher wavenumber of about 1350 cm⁻¹ and the other to lower wavenumber of about 730 cm⁻¹. For CH₂=PCl, the C=P stretching vibration of 979.7 cm⁻¹ is almost negligibly perturbed by other vibrational modes, so that it gives an almost intrinsic C=P stretching wavenumber. For CD_2 =PCl, the C=P stretching mode is coupled largely with the CD_2 scissoring mode. The band intensities of the C=P stretching vibration have also been discussed. The C=P stretching force constant was determined to be 562-668 N m⁻¹. The values for the carbon-phosphorus force constants of the double and triple bonds are roughly two and three times, respectively, as large as the value for the single bond, and the values for the carbon-phosphorus bonds are about half the values for the corresponding carbon-nitrogen bonds.

In recent years, there has been a great interest in the multiple bonding that involves elements in the third and higher rows in the periodic table. A new class of transient molecules containing a C=P bond was first reported by Kroto et al.¹ in 1976; these molecules were produced by thermal decomposition and were detected by microwave spectroscopy. At the same time, Becker² found by NMR spectroscopy some phosphaalkenes that were kinetically stabilized by bulky substituents. Since then many phosphaalkenes have been prepared by a large variety of methods.^{3,4} However, owing to their instability, gas-phase infrared spectra of simple phosphaalkenes have been scarcely obtained, and therefore the C=P stretching vibration has not been definitively assigned.

In the present paper, we report the gas-phase infrared spectra of several unstable phosphaalkenes, namely difluorophosphaethene (CF₂=PH and CF₂=PD), perfluoro-2-phosphapropene (CF₂= PCF_3), and 1-chlorophosphaethene ($CH_2 = PCl$ and $CD_2 = PCl$). We have derived unambiguous wavenumbers for the C=P stretching vibration and the force constant associated with this vibration.

Difluorophosphaethene CF₂=PH was first detected in 1976¹ by microwave spectroscopy in the products of low-pressure flow pyrolysis of CF₃PH₂ and was later identified by photoelectron and NMR spectroscopy in the products of a reaction of CF₃PH₂ with KOH.⁵ Recently we have obtained the infrared spectrum of $CF_2 = PH$ in part in the course of the preparation of $FC = P.^6$

Perfluoro-2-phosphapropene CF₂=PCF₃ was first trapped in 1979 in base hydrolysis of $(CF_3)_2$ PH with KOH by Nixon et al.,⁷ who identified it by NMR spectroscopy. Later Burg⁸ reported the infrared spectrum of this molecule in a pyrolysis study of its cyclic dimer and trimer species. Very recently, Steger et al.⁹ have

- (1) Hopkinson, M. 3., Kloto, H. W., Vikon, J. F., Simmons, W. F. C. J.
 Chem. Soc., Chem. Commun. 1976, 513.
 (2) Becker, G. Z. Anorg. Allg. Chem. 1976, 423, 242.
 (3) Kroto, H. W. Chem. Soc. Rev. 1982, 11, 435.
 (4) Appel, R.; Knoll, F.; Ruppert, I. Angew. Chem., Int. Ed. Engl. 1981, 20, 731.

- 981
- (7) Eshtiagh-Hosseini, H.; Kroto, H. W.; Nixon, J. F.; Ohashi, O. J. Organomet. Chem. 1979, 181, Cl.
- (8) Burg, A. B. Inorg. Chem. 1983, 22, 2573

(9) Steger, B.; Oberhammer, H.; Grobe, J.; Le Van, D. Inorg. Chem. 1986, 25, 3177.

determined the r_a structure of CF₂=PCF₃ by using electron diffraction.

1-Chlorophosphaethene CH₂=PCl was first characterized by microwave spectroscopy in 1976¹ through high-temperature pyrolysis of CH₃PCl₂ and later identified by NMR spectroscopy in 1980 through a reaction of CH_3PCl_2 with $N(C_2H_4)_3N^{.10}$ Among the several preparations reported, ^{1,10-13} an efficient route to CH₂=PCl is to utilize pyrolysis of (CH₃)₃SiCH₂PCl₂ at about 680 °C. Recently, the r_s structure of this molecule has been determined by Kroto et al.¹¹ and Bak et al.¹³ by using a microwave technique.

Experimental Section

The samples of CF₂=PH, CF₂=PD, and CF₂=PCF₃ were prepared by passing CF_3PH_2 , CF_3PD_2 , and $(CF_3)_2PH$ vapors, respectively, at room temperature and low pressure (ca. 20 Pa) through a glass tube, 1 cm i.d. and 70 cm long, filled with KOH pellets.⁵⁻⁷ The products were passed through a trap cooled at -120 °C so that the generated water was condensed and were stored at -196 °C. No exchange reaction from CF_2 = PD to CF_2 =PH occurred in this preparation process. The precursors were prepared by reactions of the corresponding iodo compounds with PH₃ or PD₃.⁵ CH₂=PCl was prepared by pyrolysis of $(CH_3)_3$ SiCH₂PCl₂ at about 680 °C,¹¹ and CD₂=PCl was prepared, less efficiently than CH₂=PCl, by pyrolysis of CD₃PCl₂ at about 1000 °C.¹ The pyrolysis products were passed through two traps successively, one cooled at -120 °C and the other cooled at -196 °C. The greater part of the CH2=PCI or CD₂=PCl product was, however, polymerized to yield white solid on a glass wall inside the second trap. Vacuum distillation was used to separate CH2=PCl or CD2=PCl from a large amount of byproducts.

The infrared spectra were recorded on a JEOL JIR-40X Fourier transform spectrometer at a resolution of 0.12 or 0.25 cm⁻¹ with a globar source and a TGS or an MCT detector. Mylar and KBr/Ge beam splitters were used for the measurements in the regions 50-500 and 400-4000 cm⁻¹, respectively. Dry nitrogen gas was continuously passed through the instrument during the measurement to get rid of water vapor. Sample pressures were 1-5 kPa in a 12-cm glass cell fitted with KBr or polyethylene windows. Wavenumbers of absorption peaks were calibrated against the standard lines of CO₂, H₂O, HCl, and DCl.¹⁴

⁽¹⁾ Hopkinson, M. J.; Kroto, H. W.; Nixon, J. F.; Simmons, N. P. C. J.

⁽¹⁰⁾ Appel, R.; Westerhaus, A. Angew. Chem., Int. Ed. Engl. 1980, 19, 556.

⁽¹¹⁾ Kroto, H. W.; Nixon, J. F.; Ohashi, O.; Ohno, K.; Simmons, N. P. C. J. Mol. Spectrosc. 1984, 103, 113.

⁽¹²⁾ Bock, H.; Bankmann, M. Angew. Chem., Int. Ed. Engl. 1986, 25, 265 and references therein.

⁽¹³⁾ Bak, B.; Kristiansen, N. A.; Svanholf, H. Acta Chem. Scand., Ser. A 1982, 36, 1.

⁽¹⁴⁾ Cole, A. R. H. Tables of Wavenumbers for the Calibration of Infrared Spectrometers, 2nd ed.; Pergamon: New York, 1977.

Table I. Rotational Constants and PR Separations of Band Envelopes for Phosphaalkenes

	rotational constant (cm ⁻¹)			P]	-1)		
	A	В	С	A type	B type	C type	
$CF_2 = PH^a$	0.370 493	0.158 990	0.111103	18.4	14.7	27.6	
$CF_2 = PD^a$	0.356114	0.155868	0.108 282	18.1	14.5	27.2	
$CF_2 = PCF_3^b$	0.11343	0.03484	0.030 90	9.0	7.4	13.5	
$CH_2 = P^{35}Cl^c$	0.757 607	0.155685	0.128940	18.3	15.2	27.4	
$CD_2 = P^{35}Cl^c$	0.655267	0.144 181	0.118 003	17.5	14.6	26.3	

^a Microwave data.³ ^b Calculated from the electron-diffraction data.⁹ ^c Microwave data.¹¹

Table II. Observed and Calculated Wavenumbers for CF ₂ ==PH and CF ₂ =
--

		ν (obsd) (cm ⁻¹)	int ^a	type	$\Delta \nu (\mathrm{PR})^{b} (\mathrm{cm}^{-1})$	ν (calcd) (cm ⁻¹)	P.E.D. ^c (%)
					CF ₂ =PH		
a'	ν_1	2326.9	m	$\sim B$	14	2340.0	$s_1(100)$
	ν_2	1349.5	vs	~A	18	1347.2	$s_2(59), s_5(49), s_6(19)$
	ν_3	1228.5	S	\sim B	16	1229.5	$s_3(78), s_7(18), s_4(12)$
	ν_4	884.4	m	AB	15	890.4	$s_4(86), s_3(12)$
	V5	729.3	m	AB	18	729.4	$s_5(55), s_2(26), s_6(5)$
	ν_6	485.5	m	AB	18	486.8	$s_6(81), s_2(15)$
	ν_{7}	418.3	w			414.6	$s_7(83), s_3(10)$
a″	ν_8	1088.8	w	С		1088.8	$s_8(91), s_9(2)$
	V9	568.0	w	С		568.0	$s_9(103), s_8(14)$
					$CF_2 = PD$		
a′	ν_1	1690.6	m	\sim B	14	1680.8	$s_1(100)$
	ν,	1350.2	vs	~A	18	1347.2	$s_2(59), s_5(49), s_6(19)$
	ν ₃	1219.9	s	\sim B	16	1216.9	$\overline{s_3(85)}, \overline{s_7(18)}, s_4(5)$
	ν_4	736.6	m	AB	18	742.5	$s_5(50), s_2(26), s_4(11), s_6(3)$
	VS	661.5	w	$\sim B$	14	655.3	$\overline{s_4(77)}, \overline{s_3(7)}, \overline{s_6(6)}, \overline{s_5(5)}$
	ν_6	483.5	m	AB	18	482.8	$s_6(77), s_2(15), s_4(2)$
	ν_7	401.2	w			403.5	$s_7(80), s_3(8), s_4(5)$
a''	ν_8					834.0	$s_8(75), s_9(12)$
	v ₉	544.7	vw	С		544.7	<i>s</i> ₉ (94), <i>s</i> ₈ (31)

^aint, intensity; s, strong; m, medium; w, weak; v, very; and sh, shoulder. ^b PR separation of band envelope. ^c P.E.D., potential-energy distribution. For the description of the symmetry coordinates s_i , see Table VIII. For the underlined P.E.D., see text.

Table III. Obsen	ved and	Calculated	Wavenumbers	for	CF	,=PCF	3
------------------	---------	------------	-------------	-----	----	-------	---

		this work		Burg ^a			
		ν (obsd) (cm ⁻¹)	int ^b	ν (obsd) (cm ⁻¹)	int	ν (calcd) (cm ⁻¹)	P.E.D. ^c (%)
a'	ν_1	1365.3	vs	1363	64	1363	$s_2(61), s_5(50), s_6(13)$
	ν_2	1248.9	s	1248	33	1247	$\overline{s_3(87)}, \overline{s_7(17)}$
	V3	1149.1	vs	1148	80	1145	$s_9(99), s_{11}(13)$
	ν_4	1095	w			1094	$s_8(67), s_1(42), s_{10}(29)$
	Vs	746 sh	vw	742	2.3	763	$s_5(51), s_2(24)$
	V ₆	737	w	737	2.3	736	$\overline{s_{10}(16)}, \overline{s_8(35)}, s_1(25)$
	ν_7	484 sh	vw			488	$s_7(28), s_{11}(22), s_{10}(20), s_4(8)$
	ν_8	470	w	458	0.6	470	$s_{11}(58), s_7(15), s_{10}(11)$
	V9	432	vw			424	$s_6(82), s_2(8)$
	ν_{10}					327	$s_1(24), s_7(33), s_{10}(32)$
	ν_{11}					271	$s_{12}(76), s_6(9)$
	ν_{12}					97	$s_4(83), s_{12}(7)$
a''	ν_{13}	1134.5	m	1132	86	1138	$s_{14}(102), s_{15}(14), s_{16}(7)$
	ν_{14}	551	vw	541	0.5	551	s ₁₃ (97)
	ν_{15}	475	w	458	0.6	472	$s_{15}(87)$
	ν_{16}					296	$s_{16}(89), s_{15}(7)$
	ν_{17}					76	$s_{17}(78), s_{18}(19)$
	ν_{18}					55	$s_{18}(79), s_{17}(20)$

^aReference 8. ^bSee footnote a of Table II. ^cP.E.D., potential-energy distribution. For the a' species, $s_1 = C-P$ str, $s_2 = C=P$ str, $s_3 = CF_2$ a-str, $s_4 = CPC$ def, $s_5 = CF_2$ s-str, $s_6 = CF_2$ sci, $s_7 = CF_2$ rock, $s_8 = CF_3$ s-str, $s_9 = CF_3$ a-str, $s_{10} = CF_3$ s-def, $s_{11} = CF_3$ a-def, and $s_{12} = CF_3$ rock; and for the a'' species, $s_{13} = CF_2$ wag, $s_{14} = CF_3$ a-str, $s_{15} = CF_3$ a-def, $s_{16} = CF_3$ rock, $s_{17} = C=P$ tor, and $s_{18} = C-P$ tor.

Results and Discussion

The planar molecules of CF_2 =PH and CH_2 =PCl have C_s symmetry and nine fundamentals are divided into seven of the a' species and two of the a'' species. The molecule of CF_2 =PCF₃ also belongs to the C_s point group. Of eighteen fundamentals, twelve are of the a' species and six are of the a'' species. The a' vibrations are expected to give AB-type bands, whereas the a'' vibrations are expected to give C-type bands. The rotational constants and the PR separations of the band envelopes calculated by the Seth-Paul formulas¹⁵ are given in Table I. The observed

infrared data for these molecules are given in Tables II-V.

Difluorophosphaethene. The preliminary infrared spectrum of difluorophosphaethene CF_2 —PH has been obtained in the course of the preparation of fluorophosphaethyne FC=P by treatment of CF_3PH_2 with KOH.⁶ The reaction may be described as follows

$$CF_3PH_2 \xrightarrow{KOH} CF_2 = PH \xrightarrow{KOH} FC = P$$

As the KOH treatment proceeded, several new bands appeared in the infrared spectrum. These bands are assigned to the vibrations of CF_2 —PH or FC=P on the basis of the rate of the relative intensity change with the KOH contact time or elapse time; the bands due to the same species change with the same

⁽¹⁵⁾ Seth-Paul, W. A.; Dijkstra, G. Spectrochim. Acta 1967, 23A, 2861.

Table IV. Observed and Calculated Wavenumbers for CH₂=PCl and CD₂=PCl

		ν (obsd) (cm ⁻¹)	int ^a	type	$\Delta \nu (\mathrm{PR})^{b} (\mathrm{cm}^{-1})$	ν (calcd) (cm ⁻¹)	P.E.D. ^c (%)
				СН	2=PC1		
a'	ν_1	3095.6	vw	AB	-	3087.0	s ₃ (100)
	v2	2974.3	vw			2982.6	$s_5(99)$
	ν_3	1372.3	m	AB	17	1373.0	$s_6(95), s_2(11), s_5(1)$
	ν_4	979.7	w	AB	18	980.2	$s_2(90), s_6(6), s_4(1)$
	ν ₅	792.4	S	\sim B		794.9	$\overline{s_7(93)}, s_4(6), s_1(2)$
	ν_6	499.7	vs	AB	15	505.3	$s_1(89), s_4(12), s_7(4)$
	ν_7	340.2	w			339.8	$s_4(82), s_1(10), s_7(4)$
a''	ν_8	804.7	vs	С		806.2	$s_9(101), s_8(1)$
	Vg	609.4	vw	С		609.4	s ₈ (100)
				CD	2=PCl		
a'	ν_1				-	2301.0	s ₃ (100)
	ν_2					2165.7	$s_5(98), s_2(2), s_6(1)$
	ν_3	1120.8	m	AB	17	1120.1	$s_6(52), s_2(55), s_5(2)$
	ν_4	847.9	w	AB		847.6	$\overline{s_2(44)}, \overline{s_6(48)}, s_4(1)$
	ν_5	642.9	S	$\sim B$		641.6	$\overline{s_7(72)}, \overline{s_4(18)}, s_1(12)$
	ν_6	490.0	vs	AB	15	483.9	$s_1(83), s_7(17), s_4(2)$
	ν_{γ}					309.0	$s_4(79), s_7(12), s_1(5)$
a″	ν_8	634.5	S	С		633.4	$s_9(101), s_8(1)$
	V9	431.6	vw	С		438.7	s ₈ (100)

^{*a,b,c*} See footnotes *a*, *b*, *c* of Table II.

Table V. Combination and Overtone Bands Observed for CF_2 =PH, CF_2 =PD, CH_2 =PCl, and CD_2 =PCl

$\nu(\text{obsd})$			$\nu(\text{obsd})$		
(cm ⁻¹)	int ^a	assignment	(cm^{-1})	int ^a	assignment
		CF ₂ =	PH		
2699.1	vw	2v ₂	1370.1	w	$\nu_4 + \nu_6$
2229.0	vvw	$\nu_2 + \nu_4$	1347.8 sh	vs	$\nu_2 + \nu_7 - \nu_7$
2111.4	vw	$\nu_3 + \nu_4$	1346.2 sh	vs	$\nu_2 + 2\nu_7 - 2\nu_7$
2104.8	vw	$\nu_3 + \nu_4 + \nu_7 - \nu_7$	1211.3 sh	S	$\nu_5 + \nu_6$, Fermi
2075.6	w	$\nu_2 + \nu_5$	1132.4	vw	209
2069.6	vw	$\nu_2 + \nu_5 + \nu_7 - \nu_7$	727.8 sh	w	$\nu_5 + \nu_7 - \nu_7$
		$CF_2 =$	PD		
2700.2	vvw	2v ₂	1878.9	vvw	$\nu_{3} + \nu_{4}$
2083.2	w	$v_2 + v_5$	1348.5 sh	vs	$v_{2} + v_{7} - v_{7}$
2079.1	vw	$\nu_{2} + \nu_{5} + \nu_{7} - \nu_{7}$	1347.1 sh	vs	$\bar{\nu_2} + 2\nu_7 - 2\nu_7$
2008.4	vw	$v_2 + v_4$	1215.8 sh	S	$\nu_5 + \nu_6$, Fermi
		CH ₂ =	PCI		
2744.2	vvw	2 \nu_3	1401.9	vvw	$\nu_5 + \nu_0$
2160.0	vvw	$v_3 + v_5$	996.7	w	$2\nu_6$, Fermi
1951.5	vvw	2 \nu_4	496.6 sh	vs	$v_6 + v_7 - v_7$
1618.4	vw	$2\nu_8$	493.6 sh	vs	$\nu_6 + 2\nu_7 - 2\nu_7$
1597.7	vvw	$v_5 + v_8$			• • •
		$CD_{2} =$	PCI		
1122.9	w	$\nu_5 + \nu_6$, Fermi	486.8 sh	vs	$\nu_6 + \nu_7 - \nu_7$
46		- C T-11- IT			

^aSee footnote a of Table II.

intensity ratio. We have attempted to prepare a pure sample of $CF_2 = PH$, but actually we obtained a mixture of $CF_2 = PH$, $FC \equiv P$, and CH_3PH_2 . The spectrum of the mixture containing mainly $CF_2 = PH$ and CF_3PH_2 (Figure 1b) was obtained by a single passing of CF₃PH₂ vapor through a glass tube filled with KOH pellets. Thus, we had the spectrum of CF₂=PH (Figure 1c) by subtracting the spectrum of the precursor CF_3PH_2 (Figure 1a) from the spectrum of Figure 1b; the bands of CF_2 =PH are denoted by arrows in the spectrum. Similarly, the spectrum of CF₂=PD (Figure 1d) was obtained by the KOH treatment of CF₃PD₂. The observation of various combination bands is helpful for the spectral interpretation so that the bands which are pertinent to the component fundamentals of the combination are unequivocally assigned to the same molecular species. Table V lists the observed combination bands of CF_2 -PH and CF_2 -PD, together with the overtone bands. The observed PR separations of the bands for CF₂=PH and CF₂=PD (Table II) are also in good agreement with the estimated values (Table I). Vibration-rotation analyses of the strong bands at about 1350 and 1220 cm^{-1} for CF_2 =PH and CF_2 =PD gave reasonable values of the rotational constants in comparison with the reported microwave values (Table I), namely, the successive spacings of the bands are

Figure 1. (a) Infrared spectrum of precursor CF_3PH_2 ; (b) spectrum of a mixture containing mainly CF_3PH_2 and CF_2 —PH, prepared by passing CF_3PH_2 vapor through a glass tube filled with KOH pellets; (c) difference spectrum (spectrum b – spectrum a) of CF_2 —PH; and (d) difference spectrum of CF_2 —PD. The bands of CF_2 —PH/ CF_2 —PD are denoted by arrows.

about 0.25 cm⁻¹ ($\simeq 2B$) for the A-type band and 0.46 cm⁻¹ ($\simeq 2[A - (B + C)/2]$) for the B-type band.¹⁶

The vibrational assignments were made on the basis of the wavenumber shift on deuteriation, band type, normal coordinate treatment, and spectral comparison with related molecules such as CF_2 =S,¹⁷ CF₃PH₂,¹⁸ and (CF₃)₂PH.¹⁹ The bands of CF₂=PH

⁽¹⁶⁾ Ohno, K.; Matsuura, H., unpublished work.

⁽¹⁷⁾ Hopper, M. J.; Russell, J. W.; Overend, J. Spectrochim. Acta 1972, 28A, 1215.

⁽¹⁸⁾ Bürger, H.; Cichon, J.; Demuth, R.; Grobe, J. Spectrochim. Acta 1973, 29A, 943.

⁽¹⁹⁾ Bürger, H.; Cichon, J.; Grobe, J.; Demuth, R. Spectrochim. Acta 1973, 29A, 47.

Figure 2. (a) Infrared spectrum of precursor $(CF_3)_2PH$; (b) spectrum of a mixture containing mainly $(CF_3)_2PH$ and $CF_2 = PCF_3$, prepared by passing (CF₃)₂PH vapor through a glass tube filled with KOH pellets; and (c) difference spectrum (spectrum b - spectrum a) of $CF_2 = PCF_3$. The bands of CF₂=PCF₃ are denoted by arrows.

at 2326.9 (pseudo-B-type) and 884.4 cm⁻¹ (AB-type), which are shifted to a lower wavenumber region on deuteriation, are readily assigned to the P-H stretching and CPH in-plane deformation vibrations, respectively, and the weak Q branch at 1088.8 cm⁻¹, which is overlapped with unidentified bands, is assigned tentatively to the CPH out-of-plane deformation vibration. The pseudo-Atype band at 1349.5 cm⁻¹, the pseudo-B-type band at 1228.5 cm⁻¹, and the AB-type band at 729.3 cm⁻¹ are assigned respectively to the C=P stretching, CF_2 antisymmetric stretching, and CF_2 symmetric stretching vibrations. These bands are correlated well with the A-, B-, and A-type bands of CF₂=S at 1368, 1189, and 787 cm^{-1,17} For CF₂=S, the CF₂ wagging, scissoring, and rocking vibrations have been assigned to the C-type band at 622 cm⁻¹ the A-type band at 526 cm⁻¹, and the B-type band at 417 cm⁻¹ respectively. Thus, for CF_2 =PH, the C-type band at 568.0 cm⁻¹ and the AB-type band at 485.5 cm⁻¹ are safely assigned to the CF₂ wagging and scissoring vibrations, respectively, but the weak band at 418.3 cm⁻¹ is tentatively assigned to the CF₂ rocking vibration. The vibrational assignments of CF₂=PH and CF₂=PD are summarized in Table II, where some of the previous assignments for $CF_2 = PH^6$ have been interchanged. The C = Pstretching vibration is assigned to the very strong bands at 1349.5 and 1350.2 cm⁻¹ for CF₂=PH and CF₂=PD, respectively, whose wavenumbers are, however, considerably higher than the C = Pstretching wavenumber (1278.3 cm⁻¹) for HC=P.²⁰

The P-H and P-D stretching modes are highly localized in the normal vibrations of 2326.9 and 1690.6 cm⁻¹, respectively, these wavenumbers being almost coincident with those for PH₃ (av. 2325.0 cm^{-1} ²¹ and PD₃ (av. 1689.6 cm⁻¹).²² If the relationship²³ between the bond length and the stretching wavenumber is assumed, the P-H bond length of CF_2 =PH is expected to be very close to 1.420 Å for PH_3^{24} The P–H bond length for CH_2 =PH has also been obtained to be 1.420 Å.25 The CPH angle of $CF_2 = PH$ may also be similar to the corresponding angle for $CH_2 = PH$, because the changes of the bond angles from NH_3

Figure 3. Infrared spectra for pyrolysis products of (CH₃)₃SiCH₂PCl₂: (a) immediately after the pyrolysis; (b) after elimination of HCl, HC=P, and $CH_2 = CH_2$ from the products; and (c) 12 h after spectrum b. The bands of CH2=PCI are denoted by arrows. Other bands are identified as (CH₃)₃SiCl (1), HCl (2), CH₃PCl₂ (3), CH₂=CH₂ (4), and HC=P (5).

 $(106.68^{\circ})^{26}$ and PX₃ (X = H, 93.345°;²⁴ and X = Cl, 100.27°²⁷) to CH₂=NH (110.4°)²⁸ and CH₂=PX (X = H, 97.4°;²⁵ and X = Cl, $103.0^{\circ 11}$) have a good correlation with each other.

Perfluoro-2-phosphapropene. Burg⁸ has obtained the infrared spectrum of perfluoro-2-phosphapropene CF₂=PCF₃ by lowpressure pyrolysis of its cyclic dimer and trimer species. We have independently investigated the infrared spectrum of CF₂=PCF₃ by a base reaction of $(CF_3)_2$ PH with KOH. In this reaction, a trace of water played an important role in promoting the formation of $CF_2 = PCF_3$. In the absence of water, only the precursor was recovered, whereas in the presence of a considerable amount of water, most of the low-boiling products were CF_3H and CF_2H_2 . Spectra a and b of Figure 2 are the infrared spectra of the precursor $(CF_3)_2PH$ and the mixture containing mainly $CF_2 = PCF_3$ and (CF₃)₂PH. The difference spectrum (Figure 2, spectrum b-spectrum a) is shown in Figure 2c, where the bands of CF_2 = PCF₃ are denoted by arrows. The observed wavenumbers for CF₂=PCF₃ are listed in Table III, together with Burg's results.⁸ The strong bands observed above 700 cm⁻¹ are in good agreement with Burg's observation. The PR separations of 8 cm⁻¹ for the 1365.3-cm⁻¹ band and 7 cm⁻¹ for the 1248.9-cm⁻¹ band compare well with the expected values given in Table I. The weak bands in the region below 700 cm⁻¹, whose wavenumbers are somewhat different from Burg's results, have been assigned tentatively. The band assignable to the C=P stretching vibration is observed at 1365.3 cm⁻¹; this assignment is reasonable in comparison with the assignment for CF₂=PH and CF₂=PD.

1-Chlorophosphaethene. CH₂=PCl was prepared by the pyrolysis of (CH₃)₃SiCH₂PCl₂ at about 680 °C under a pressure of 5-8 Pa. The pyrolysis products were passed through two traps cooled at -120 and -196 °C. The gas-phase infrared spectra of the mixture collected in the second trap are shown in Figure 3, where the bands assignable to CH₂=PCl are denoted by arrows and other bands are identified as those of (CH₃)₃SiCl, HCl, CH₃PCl₂, CH₂=CH₂, and HC≡P. Spectra b and c of Figure 3 indicate that the bands due to CH_2 =PCl decrease in intensity in the presence of HCl, while the bands due to CH₃PCl₂ gradually increase. The spectral observation in Figure 3 suggests the following reaction process

$$(CH_3)_3SiCH_2PCl_2 \xrightarrow{\Delta(680 \ ^{\circ}C)} CH_2 = PCl \xrightarrow{\Delta} HC = P$$

Byproducts such as $CH_2 = CH_2$ and HC = CH may be formed

 ⁽²⁰⁾ Garneau, J. M.; Cabana, A. J. Mol. Spectrosc. 1981, 87, 490.
 (21) Baldacci, A.; Devi, V. M.; Rao, K. N.; Tarrago, G. J. Mol. Spectrosc.

^{1980, 81, 179.} (22) Kijima, K.; Tanaka, T. J. Mol. Spectrosc. 1981, 89, 62.

⁽²³⁾ Duncan, J. L.; Harvie, J. L.; McKean, D. C.; Cradock, S. J. Mol.

Struct. 1986, 145, 225. (24) Maki, A. G.; Sams, R. L.; Olson, W. B. J. Chem. Phys. 1973, 58,

⁴⁵⁰² (25) Kroto, H. W.; Nixon, J. F.; Ohno, K. J. Mol. Spectrosc. 1981, 90,

^{367.}

⁽²⁶⁾ Benedict, W. S.; Plyler, E. K. Can. J. Phys. 1957, 35, 1235.

 ⁽²⁷⁾ Hedberg, K.; Iwasaki, M. J. Chem. Phys. 1962, 36, 589.
 (28) Pearson, R.; Lovas, F. J. J. Chem. Phys. 1977, 66, 4149.

Figure 4. Infrared spectrum for pyrolysis products of $(CH_3)_3SiCH_2PCl_2$ containing mainly CH_2 =PCl. Fundamentals of CH_2 =PCl are denoted by arrows.

through a C-P bond cleavage which occurs more easily at higher temperatures. The sample of CH_2 =PCl readily reacts with HCl to yield CH_3PCl_2 in an infrared cell at room temperature. The identification of CH_2 =PCl is also supported by the observation of the relevant combination bands (Table V) and the PR separations of the bands assignable to CH_2 =PCl (Tables I and IV). The vibration-rotation analysis of the AB-type band at 1372.3 cm⁻¹ has also identified CH_2 =PCl.¹⁶

Figure 4 shows a typical spectrum of the products containing mainly CH₂=PCl. The weak Q branch at 3095.6 cm⁻¹ is reasonably assigned to the vinylic CH₂ antisymmetric stretching vibration, and the very weak band at 2974.3 cm⁻¹ is assigned tentatively to the CH₂ symmetric stretching vibration. The ABtype bands at 1372.3 and 979.7 cm⁻¹ may be attributed to the CH_2 scissoring and C=P stretching vibrations, respectively. The band contours around 800 cm⁻¹ are interpreted to be composites of the C-type band centered at 804.7 cm⁻¹ (CH₂ wagging) and the pseudo-B-type band centered at 792.4 cm⁻¹ (CH₂ rocking). The weak C-type band at 609.4 cm⁻¹ is assigned to the CH₂ twisting vibration, the strong band at 499.7 cm⁻¹ to the P-Cl stretching vibration, and the very weak band at 340.2 cm⁻¹ to the CPCl bending vibration. In this way, all of the fundamentals of CH2=PCl have been detected. The CH2 scissoring, rocking, and wagging wavenumbers of CH₂=PCl (1372.3, 792.4, and 804.7 cm⁻¹, respectively) are similar to those of CH_2 =SiH₂ (1350, 741, and 817 cm⁻¹),²⁹ but they are considerably smaller than the wavenumbers for the corresponding vibrations of CH_2 =S (1447.0, 991.0, and 990.2 cm⁻¹).³⁰ Similar wavenumber differences have been noted for the CF_2 vibrations between CF_2 =PH and CF_2 = S.¹⁷ The C=P stretching wavenumber of CH_2 =PCl, 979.7 cm⁻¹, differs significantly from the wavenumbers of fluorophosphaalkenes (ca. 1350 cm⁻¹).

In order to confirm the band assignments of CH_2 =PCl mentioned above, the deuteriated derivative CD_2 =PCl was prepared by the pyrolysis of CD_3PCl_2 . The spectra of the pyrolysis products are shown in Figure 5; Figure 5a is the spectrum of the products immediately after the pyrolysis, Figure 5b is the spectrum of the products kept in an infrared cell for 15 h, and Figure 5c is the difference spectrum (spectrum a-spectrum b). More enhanced bands in Figure 5b than in Figure 5a are due to CD_3PCl_2 and CD_2HPCl_2 . Thus, the following reaction process is suggested to occur

$$CD_2 = PCl \xrightarrow{+DCl_1 + HCl} CD_3 PCl_2 + CD_2 HPCl_2$$

The spectral pattern in the region 500–1500 cm⁻¹ of CD₂=PCl (Figure 5c) resembles very much that of CH₂=PCl (Figure 4); on deuteriation, the bands of CH₂=PCl at 1372.3, 979.7, 792.4, and 804.7 cm⁻¹ are shifted to 1120.8 (AB-type), 847.9 (AB-type),

Figure 5. Infrared spectra for pyrolysis products of CD_3PCl_2 : (a) immediately after the pyrolysis; (b) after 15 h of pyrolysis; and (c) after subtracting spectrum b from spectrum a. The bands of CD_2 —PCl are denoted by arrows. Other bands are identified as CD_3PCl_2 (1) and CD_2HPCl_2 (2).

642.9 (pseudo-B-type), and 634.5 cm⁻¹ (C-type), respectively. The Q branch at 490.0 cm⁻¹, which is heavily overlapped with the absorptions of CD₃PCl₂ and CD₂HPCl₂, is assigned to the P-Cl stretching vibration, and the very weak Q branch at 431.6 cm⁻¹ is assigned tentatively to the CD_2 twisting vibration. The large wavenumber shift of the 1372.3-cm⁻¹ band (CH₂ scissoring) of $CH_2 = PCl$ to 1120.8 cm⁻¹ on deuteriation establishes the assignment of the fairly weak bands at 979.7 cm⁻¹ for CH_2 =PCl and 847.9 cm⁻¹ for CD₂=PCl to the C=P stretching vibration. The weak intensities of these bands are in contrast with the strong intensities of the C=P stretching bands at about 1350 cm⁻¹ for fluorophosphaalkenes. Other fundamentals of $CD_2 = PCl$ were not detected in the present study due possibly to their weak intensities. The observed wavenumbers and assignments of the infrared bands of CH2=PCl and CD2=PCl are listed in Table IV. The weak C-type bands at 754.8 and 747.9 cm⁻¹ in Figure 5c are assigned to the CPH out-of-plane deformation of the CHD==PCl species with the cis and trans dispositions, respectively, of the H and Cl atoms.

Normal Coordinate Treatment. Normal coordinates were treated for CF₂=PH, CF₂=PCF₃, and CH₂=PCl and their deuteriated species in order to elucidate the large difference in the C=P stretching wavenumber between CF_2 =PH (1349.5 cm⁻¹) and CH₂=PCl (979.7 cm⁻¹) and to derive the force constant associated with this vibration. The molecular structures of CF₂=PH and CH₂=PCl were taken from the microwave results,^{1,11} and those of CF_2 =PCF₃ were transferred from the results of CF_2 =PH¹ and CF_3 PH₂.¹⁸ The Urey-Bradley force field with moderate constraints was employed for the normal coordinate treatment, since only the limited vibrational data were available in the present study. At first, the Urey-Bradley force constants were determined for CF₃PH₂ and (CF₃)₂PH on the basis of Bürger's vibrational assignments.^{18,19} Secondly, the force constants for $CF_2 = S_1^{17} CF_3 PH_2$, and $(CF_3)_2 PH$ were transferred to C- F_2 =PH as initial values. The force constants, except for the repulsion constants, F(FCF) and F(CPH), were then adjusted to fit the observed wavenumbers for CF_2 =PH and CF_2 =PD. Finally, the force constants for CF_2 =PH and $(CF_3)_2$ PH were transferred to $CF_2 = PCF_3$, and some of the force constants were adjusted. A similar procedure was utilized for the normal coordinate treatment of CH₂=PCl. Namely, the Urey-Bradley force constants were first determined for CH2=S,30 CH3PCl2,31

^{(29) (}a) Reisenauer, H. P.; Mihm, G.; Maier, G. Angew. Chem., Int. Ed. Engl. 1982, 21, 854. (b) Maier, G.; Mihm, G.; Reisenauer, H. P. Chem. Ber. 1984, 117, 2351.

⁽³⁰⁾ Turner, P. H.; Halonen, L.; Mills, I. M. J. Mol. Spectrosc. 1981, 88, 402.

⁽³¹⁾ Durig, J. R.; Block, F.; Levin, I. W. Spectrochim. Acta 1965, 21, 1105.

Table VI. Urey-Bradley Force Constants for CF_2 =PH, CF_2 =PCF₃, and CH_2 =PCI^a

				-
force constant	value	force constant	value	
	CF ₂	=PH		
K(P-H)	3.081	H(CPH)	0.322	
K(C = P)	5.565	F(FCF)	1.103 ^b	
K(C-F)	4.527	F(FCP)	0.461	
H(FCF)	0.291	F(CPH)	0.149 ^b	
H(FCP)	0.337			
	CH	=PCI		
K(P-Cl)	2.331	H(CPCl)	0.447	
K(C = P)	5.068	F(HCH)	0.0 ^b	
K(C-H)	4.879	F(HCP)	0.285	
H(HCH)	0.348	F(CPCI)	0.162 ^b	
H(HCP)	0.102			
	CF.=	=PCF.		
K(C = P)	5 895	H(CPC)	0.198	
K(C - P)	3.078	F(FCP), CF	0.207	
K(C-F), CF	4.885	F(CPC)	0.041 ^b	
$K(C-F)$, CF_3	4.130	$F(CH_1 wag)$	0.548	
$H(FCF), CF_3$	0.202	$\kappa(CF_3)$	0.023	
$H(FCP), CF_3$	0.242	$\tau(CP)$	0.100 ^b	
all 's Cal Care		102 NT		1

^{*a*}Units of the force constants are 10^2 N m⁻¹ for stretching, K; bending, H; and repulsion, F; and 10^{-18} N m for intramolecular tension, κ ; torsion, τ ; and $F(CH_2 \text{ wag})$. ^{*b*}Values fixed in the least-squares fit. ^{*c*}Other constants than those listed here are transferred from CF₂=PH.

and $(CH_3)_2PCl^{32}$ and were then transferred to CH_2 =PCl. The force constants, except for F(HCH) and F(CPCl), were varied to reproduce the observed wavenumbers of CH_2 =PCl and CD_2 =PCl. The observed and calculated wavenumbers for CF_2 =PH and CF_2 =PD are given in Table II, those for CF_2 = PCF₃ in Table III, and those for CH_2 =PCl and CD_2 =PCl in Table IV, where the calculated potential-energy distributions are also included. These results indicate that the vibrational coupling among the symmetry coordinates is appreciable in most of the normal vibrations. Accordingly, the most dominant mode in the potential-energy distribution is adopted, in general, for describing the vibrational assignment. The Urey-Bradley force constants obtained are listed in Table VI.

The force constants for CF₂=PH and CH₂=PCl in terms of the symmetry coordinates are given in Table VII. The C=P stretching force constant F(C=P str), as a diagonal element of the F_s matrix, is 642 N m⁻¹ for CF₂=PH and CF₂=PD, 668 N m⁻¹ for CF₂=PCF₃, and 562 N m⁻¹ for CH₂=PCl and CD₂=PCl; these values may be compared with those for the C=S stretching force constant, 764 N m⁻¹ for CF₂=S and 655 N m⁻¹ for CH₂=S. The C-P stretching force constant F(C-P str) was determined to be 328 N m⁻¹ for CF₃PH₂, 329/324 N m⁻¹ for (CF₃)₂PH, 295 N m⁻¹ for CH₃PCl₂, and 267/262 N m⁻¹ for (CH₃)₂PCl.¹⁶ These values are compared with 258, 302/250, and 308 N m⁻¹ reported previously for CF₃PH₂,¹⁸ (CF₃)₂PH,¹⁹ and CH₃PCl₂,³¹ respectively.

Band Intensity of the C=P Stretching Vibration. Although the ν_2 band of CF₂=PH (1349.5 cm⁻¹) and the ν_4 band of CH₂=PCl (979.7 cm⁻¹) are assigned to the C=P stretching vibration, their intensities are remarkably different from one another (see Figures 1c and 4). This difference in intensity may be qualitatively explained as follows. The band intensity Γ_i is expressed as³³

$$\mathbf{T}_i = (N_{\rm A}\pi d_i/3c^2\omega_i) \ (\partial P/\partial Q_i)^2$$

where $(\partial P/\partial Q_i)$ is the derivative of the dipole moment P with respect to the *i*th normal coordinate Q_i and d_i is the degeneracy of the *i*th normal mode with wavenumber ω_i . N_A is Avogadro's number and c is the velocity of light. The quantity $(\partial P/\partial Q_i)$ may be transformed as

$$(\partial P/\partial Q_i) = \sum_i l_{ji} (\partial P/\partial s_j)$$

Table VII. Force Constants in Terms of the Symmetry Coordinates for CF_2 =PH and CH_2 =PCl^a

	$CF_2 = PH$			$CH_2 = PCl$	
	force constant	value		force constant	value
a'	$F_{11}(P-H str)$	3.151	a'	$F_{11}(P-Cl str)$	2.439
	F_{12}	0.093		F_{12}	0.104
	F_{14}	0.092		F_{14}	0.143
	$F_{22}(C = P \text{ str})$	6.420		$F_{22}(C = P str)$	5.620
	F_{23}	0.0		F_{23}	-0.012
	F_{24}	0.110		F_{24}	0.115
	F_{25}	0.530		F ₂₅	0.307
	F ₂₆	-0.211		F_{26}	-0.130
	F_{27}	0.0		F ₂₇	0.011
	$F_{33}(CF_2 \text{ a-str})$	4.781		$F_{33}(CH_2 \text{ a-str})$	5.052
	F_{35}	0.0		F ₃₅	-0.014
	F_{36}	0.0		F_{36}	-0.001
	F_{37}	0.228		F_{37}	0.121
	$F_{44}(CPH def)$	0.928		$F_{44}(CPC1 def)$	1.772
	$F_{55}(CF_2 \text{ s-str})$	6.285		$F_{55}(CH_2 \text{ s-str})$	5.052
	F_{56}	0.589		F 56	-0.070
	F ₅₇	0.0		F ₅₇	0.002
	$F_{66}(CF_2 \text{ sci})$	1.208		$F_{66}(CH_2 \text{ sci})$	0.386
	F ₆₇	0.0		F ₆₇	-0.006
	$F_{77}(CF_2 \text{ rock})$	1.022		$F_{77}(CH_2 \text{ rock})$	0.341
a''	$F_{88}(CPH def)$	1.199	a″	$F_{88}(CH_2 \text{ twist})$	0.368
	F ₈₉	-0.204		F ₈₉	0.028
	$F_{99}(CF_2 \text{ wag})$	0.666		$F_{99}(CH_2 \text{ wag})$	0.237

^a Units of the force constants are 10^2 N m⁻¹ for str-str, 10^{-8} N for str-bend, and 10^{-18} N m for bend-bend.

where s_j is the *j*th symmetry coordinate and l_{ji} is the element of the L matrix. The L matrix elements calculated for CF₂=PH and CH₂=PCl are given in Table VIII. For CF₂=PH, the C=P stretching (s_2) , CF₂ symmetric stretching (s_5) , and CF₂ scissoring modes (s_6) contribute for the most part to the normal vibration ν_2 .

If the derivatives of the dipole moment for CF₂=PH are assumed to be equal to those for CF₂=S, namely $(\partial P/\partial s_2) = -3.07$ D Å⁻¹, $(\partial P/\partial s_5) = 4.83$ D Å⁻¹, and $(\partial P/\partial s_6) = -1.81$ D rad⁻¹,¹⁷ then the intensity Γ_2 is estimated to be much larger than Γ_5 , being consistent with the experimental observation as shown in Figure 1c. For CH₂=PCl, the calculated L matrix suggests that the normal vibration ν_4 is associated primarily with the C=P stretching (s_2) and CH₂ scissoring modes (s_6), whereas the potential-energy distribution defined by

$$(P.E.D.)_{ii} = (l_{ii}^2 F_{ii} / \lambda_i) 100$$

shows that the C=P stretching mode (s_2) contributes almost exclusively to v_4 . The coupling between vibrational modes, as evaluated through the potential-energy distribution, is reflected by the band shift from their intrinsic wavenumbers. These considerations indicate that the observed intensity of the v_4 band of CH₂=PCl does not necessarily represent the intrinsic C=P stretching intensity, although this vibration gives the intrinsic C=P stretching wavenumber. The values of $(\partial P/\partial s_2)$ and $(\partial P/\partial s_6)$ are likely to be of the same sign, as suggested by the facts that the v_3 band is stronger than the v_4 band (Figures 4 and 5c) and that the L matrix elements associated with s_2 and s_6 are of the same sign for v_3 .

The C=P Stretching Wavenumber and Force Constant. The calculated potential-energy distributions for CF₂=PH, CF₂=PD, and CF₂=PCF₃ (Tables II and III) indicate that the C=P stretching mode (s_2) is highly coupled with the CF₂ symmetric stretching mode (s_3). This vibrational perturbation makes one of the coupled vibrations shift to higher wavenumber of about 1350 cm⁻¹ and makes the other shift to lower wavenumber of about 1350 cm⁻¹. For CH₂=PCl (Table IV), on the other hand, the C=P stretching wibrational modes, so that it gives an almost intrinsic C=P stretching wavenumber. This wavenumber compares well with the C=S stretching wavenumber 1059.2 cm⁻¹ for CH₂=S¹⁷ and the C=S is tretching wavenumbers 985 and 984 cm⁻¹ for CH₂=SiHCl, respectively.²⁹ For CD₂=PCl,

^{(32) (}a) Goubeau, J.; Baumgärtner, R.; Koch, W.; Müller, U. Z. Anorg. Allg. Chem. 1965, 337, 174. (b) Durig, J. R.; Saunders, J. E. J. Mol. Struct. 1975, 27, 403.

⁽³³⁾ Hopper, M. J.; Russell, J. W.; Overend, J. J. Chem. Phys. 1968, 48, 3765.

Table VIII. L Matrix Elements for CF2=PH and CH2=PCla

			$CF_2 = I$	'H			
	Q_1	Q_2	<i>Q</i> ₃	<i>Q</i> ₄	Q5	Q_6	Q_7
$s_1(P-H str)$	1.0120	-0.0076	-0.0073	0.0177	-0.0038	-0.0012	0.0034
$s_2(C = P str)$	-0.0032	<u>0.3142</u>	-0.0039	0.0272	0.1132	0.0577	-0.0031
$s_3(CF_2 \text{ a-str})$	-0.0009	0.0005	-0.3819	-0.1106	0.0108	0.0052	0.0460
s_4 (CPH def)	-0.0047	-0.0382	0.3375	-0.6580	0.0682	0.0172	-0.0307
$s_5(CF_2 \text{ s-str})$	-0.0021	<u>-0.2883</u>	-0.0049	0.0318	0.1650	0.0157	-0.0015
$s_6(CF_2 \text{ sci})$	0.0035	<u>0.4127</u>	0.0062	-0.0172	0.1176	-0.3058	0.0125
$s_7(CF_2 \text{ rock})$	-0.0255	-0.0006	0.3905	0.0452	0.0025	0.0170	0.2866
	Q_8	Q_9					
s _s (CPH def)	0.7286	0.1509					
$s_9(CF_2 \text{ wag})$	-0.1549	0.5426					
			CH ₂ =F	PCI			
	Q_1	Q_2	Q_3	Q_4	Qs	Q_6	Q7
$s_1(P-Cl str)$	-0.0002	0.0000	-0.0034	-0.0235	-0.0545	0.2337	0.0524
$s_2(C = P str)$	0.0096	-0.0628	0.1449	0.3008	0.0057	0.0011	0.0064
$s_3(CH_2 a-str)$	1.0554	0.0392	0.0002	-0.0020	-0.0137	-0.0037	0.0048
s_4 (CPCl def)	-0.0573	-0.0048	-0.0060	-0.0526	0.1148	-0.0994	0.1771
$s_5(CH_2 \text{ s-str})$	-0.0377	1.0159	0.0442	-0.0070	0.0004	0.0001	0.0003
$s_6(CH_2 sci)$	0.0071	-0.1884	1.6506	<u>-0.2973</u>	0.0189	0.0009	-0.0107
$s_7(CH_2 rock)$	-0.1313	-0.0076	-0.0211	-0.0196	1.0074	0.1370	-0.0858
	Q_8	Q_9					
$s_8(CH_2 \text{ twist})$	-0.0787	0.7721					
$s_9(CH_2 wag)$	1.2754	-0.0173					

^a Definition of the symmetry coordinates s_i is the same as that of CH₂=NH³⁵ except for the coordinates s_3 , s_5 , and s_7 ; $s_3 = (\Delta r_3 - \Delta r_2)/\sqrt{2}$, $s_5 = (\Delta r_3 + \Delta r_2)/\sqrt{2}$, and $s_7 = (\Delta \beta_3 - \Delta \beta_2)/\sqrt{2}$. For the underlined L matrix elements, see text.

Fable IX. Stretching Force Constants of Carbon-Phosphorus and Carbon-Nitrogen Bonds

force constant	value ^a	force constant	value ^a
F(C-P)	2.5-3.3	F(C-N)	5.1-7.2°
F(C = P)	5.6-6.7	F(C=N)	13.4-14.3°
$F(C \equiv P)$	8.0-9.2 ^b	$F(C \equiv N)$	16.9–18.8 ^b

^a In units of 10² N m⁻¹. ^b Reference 36. ^c Reference 37.

however, large vibrational coupling occurs between the C=P stretching (s_2) and CD₂ scissoring modes (s_6) with their intrinsic vibrational energies almost coincident with one another, resulting in large shifts of their vibrational levels. Thus, the observed wavenumbers of these vibrations are shifted by about 130 cm⁻¹ to higher and lower wavenumbers from the unperturbed wavenumber of approximately 980 cm⁻¹. This is the same situation as observed for fluorophosphaalkenes.

The C=P stretching force constant F(C=P str) was determined to be 562–668 N m⁻¹ for CF₂=PH, CF₂=PCF₃, and CH₂=PCI. Similar force constant values, 635.7 and 560–577 N m⁻¹, have been reported respectively for the C=S stretching vibration (1059.2 cm⁻¹) of CH₂=S³⁰ and the C=Si stretching vibration (1003.5 cm⁻¹) of CH₂=Si(CH₃)₂.³⁴

The stretching force constants of the carbon-phosphorus multiple bonds are summarized in Table IX, where the force

constants of the carbon-nitrogen multiple bonds are also included. It is interesting to note that the values for the double and triple bonds are roughly two and three times, respectively, as large as the value for the single bond and that the values for the carbon-phosphorus bonds are about half the values for the corresponding carbon-nitrogen bonds.

Conclusions

The present infrared study of fluorophosphaalkenes and 1chlorophosphaethene has given useful information for the C=Pstretching vibration. The C=P stretching bands are observed in a wide range of 840–1370 cm⁻¹, in contrast with the characteristic C=N stretching bands that are observed at 1600-1700 cm⁻¹ well outside the fingerprint region. On the other hand, the determined values of the C=P stretching force constant are in a narrow range of 562-668 N m⁻¹ and are roughly two times as large as the value of the C-P stretching force constant. Thus, the observed C=P stretching wavenumbers are greatly dependent not only on the value of the C=P stretching force constant, which gives an intrinsic wavenumber of approximately 980 cm⁻¹, but also on the magnitude of the coupling with nearby vibrations of the same symmetry. The intensity of the C=P stretching vibration also varies with the magnitude of the vibrational coupling. The effect of the coupling on the intensity is different from that on the band shift from the intrinsic wavenumber. The isoelectronic C=Si, C=P, and C=S bonds have been shown to have similar values for the stretching force constants and accordingly similar intrinsic stretching wavenumbers.

Acknowledgment. The present work was partially supported by Grants-in-Aid for Scientific Research Nos. 59540290 and 60303003 from the Ministry of Education, Science, and Culture, Japan. The calculations in this work were performed on a HITAC M-200H computer of the Information Processing Center, Hiroshima University.

^{(34) (}a) Gusel'nikov, L. E.; Volkova, V. V.; Avakyan, V. G.; Nametkin, N. S. J. Organomet. Chem. 1980, 201, 137. (b) Nefedov, O. M.; Mal'tsev, A. K.; Khabashesku, V. N.; Korolev, V. A. J. Organomet. Chem. 1980, 201, 123.

⁽³⁵⁾ Hamada, Y.; Hashiguchi, K.; Tsuboi, M.; Koga, Y.; Kondo, S. J. Mol. Spectrosc. 1984, 105, 70.

⁽³⁶⁾ Ohno, K.; Matsuura, H.; Murata, H. J. Phys. Chem. 1984, 88, 342 and references therein.

^{(37) (}a) Amatatsu, Y.; Hamada, Y.; Tsuboi, M.; Sugie, M. J. Mol. Spectrosc. 1985, 111, 29 and references therein. (b) Inamori, T.; Hamada, Y.; Tsuboi, M.; Koga, Y.; Kondo, S. J. Mol. Spectrosc. 1985, 109, 256 and references therein.